Deep Sparse Coding for Invariant Multimodal Halle Berry Neurons

نویسندگان

  • Edward Kim
  • Darryl Hannan
  • Garrett Kenyon
چکیده

Deep feed-forward convolutional neural networks (CNNs) have become ubiquitous in virtually all machine learning and computer vision challenges; however, advancements in CNNs have arguably reached an engineering saturation point where incremental novelty results in minor performance gains. Although there is evidence that object classification has reached human levels on narrowly defined tasks, for general applications, the biological visual system is far superior to that of any computer. Research reveals there are numerous missing components in feed-forward deep neural networks that are critical in mammalian vision. The brain does not work solely in a feed-forward fashion, but rather all of the neurons are in competition with each other; neurons are integrating information in a bottom up and top down fashion and incorporating expectation and feedback in the modeling process. Furthermore, our visual cortex is working in tandem with our parietal lobe, integrating sensory information from various modalities. In our work, we sought to improve upon the standard feed-forward deep learning model by augmenting them with biologically inspired concepts of sparsity, top-down feedback, and lateral inhibition. We define our model as a sparse coding problem using hierarchical layers. We solve the sparse coding problem with an additional top-down feedback error driving the dynamics of the neural network. While building and observing the behavior of our model, we were fascinated that multimodal, invariant neurons naturally emerged that mimicked, “Halle Berry neurons” found in the human brain. These neurons trained in our sparse model learned to respond to high level concepts from multiple modalities, which is not the case with a standard feedforward autoencoder. Furthermore, our sparse representation of multimodal signals demonstrates qualitative and quantitative superiority to the standard feed-forward joint embedding in common vision and machine learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal sparse representation learning and applications

Unsupervised methods have proven effective for discriminative tasks in a singlemodality scenario. In this paper, we present a multimodal framework for learning sparse representations that can capture semantic correlation between modalities. The framework can model relationships at a higher level by forcing the shared sparse representation. In particular, we propose the use of joint dictionary l...

متن کامل

Sparse and Background-Invariant Coding of Vocalizations in Auditory Scenes

Vocal communicators such as humans and songbirds readily recognize individual vocalizations, even in distracting auditory environments. This perceptual ability is likely subserved by auditory neurons whose spiking responses to individual vocalizations are minimally affected by background sounds. However, auditory neurons that produce background-invariant responses to vocalizations in auditory s...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Multimodal Sparse Coding for Event Detection

Unsupervised feature learning methods have proven effective for classification tasks based on a single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities. The shared representations are applied to multimedia event detection (MED) and evaluated in comparison to unimodal counterparts, as well as other feature learning methods such ...

متن کامل

Learning Feature Hierarchies for Object Recognition

In this thesis we study unsupervised learning algorithms for training feature extractors and building deep learning models. We propose sparse-modeling algorithms as the foundation for unsupervised feature extraction systems. To reduce the cost of the inference process required to obtain the optimal sparse code, we model a feed-forward function that is trained to predict this optimal sparse code...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07998  شماره 

صفحات  -

تاریخ انتشار 2017